Công thức nguyên hàm lnx và cách giải các dạng bài tập

admin

Nguyên hàm In x là dạng bài bác tập dượt khiến cho nhiều học viên bị thất lạc điểm. Vì vậy nhằm ăn đầy đủ điểm bài bác tập dượt phần này những em cần thiết bắt chắc chắn toàn cỗ công thức na ná rèn luyện thiệt nhiều dạng khác nhau bài bác tập dượt. Hãy tìm hiểu thêm tức thì nội dung bài viết sau đây nhằm vẫn tồn tại điểm phần này nhé!

1. Khái niệm nguyên vẹn hàm lnx

Ta với hàm số $f(x)$ xác lập bên trên K. Hàm số $f(x)$ đó là nguyên vẹn hàm của hàm số $f(x)$ bên trên K nếu như $f'(x)=f(x)$ với $x\in K$. Nguyên hàm của $lnx$ sẽ tiến hành tính như sau:

Đặt $\left\{\begin{matrix}u=lnx\\dv=dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}
du=\frac{1}{x}dx\\v=x \end{matrix}\right.$

Ta có $\int lnxdx=xlnx-\int dx'=xlnx-x+C$

2. Bảng công thức nguyên vẹn hàm của ln(x)

Ta với bảng công thức nguyên hàm In x và một số trong những nguyên vẹn hàm cơ bạn dạng thông thường bắt gặp.

Bảng nguyên vẹn hàm Inx và một số trong những nguyên vẹn hàm cơ bản

3. Cách tính nguyên vẹn hàm lnx

3.1. Nguyên hàm ln(x+1)

Ví dụ 1: Với $\int_{1}^{2}ln(x+1)dx=aln3+bln2+c$, nhập cơ a, b, c là những số nguyên vẹn. Tính S=a+b=c.

Giải:

Đặt  $\left\{\begin{matrix}u=ln(x+1)\\dv=dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}
du=\frac{1}{x+1}dx\\v=x+1 \end{matrix}\right.$

Lúc này tao có:

$\int_{1}^{2}ln(x+1)dx= (x+1)ln(x+1)\left|\begin{matrix}
2\\1 \end{matrix}\right.-\int_{1}^{2}dx=3ln3-2ln2-1$

Như vậy: a=3; b=-2; c=-1

$\Rightarrow$ S=a+b+c=0

Ví dụ 2: Tìm nguyên vẹn hàm của hàm số sau: $B=x^2Inxdx$

Giải: 

B=$\int x^{2}lnxdx=\int lnxd(\frac{x^{3}}{3})$

=$\frac{x^{3}}{3}lnx-\int \frac{x^{3}}{3}.d(lnx)$

=$\frac{x^{3}}{3}lnx-\int \frac{x^{3}}{3}.\frac{dx}{3}=\frac{x^{3}}{3}lnx-\frac{x^{3}}{9}+C$

Nắm đầy đủ kỹ năng về nguyên vẹn hàm và những kỹ năng Toán thi đua trung học phổ thông Quốc Gia không giống với cỗ bí quyết độc quyền của VUIHOC ngay!

3.2. Nguyên hàm 1+ln/x

Ví dụ 1:

Tìm nguyên vẹn hàm J=$\int \frac{(lnx+1)lnx}{(lnx+1+x)}dx$

Giải:

Ta có: J=$\int \frac{lnx+1}{x(\frac{lnx+1}{x}+1)}^{3}.\frac{lnx}{x^{2}}dx$

Đặt t=$\frac{lnx+1}{x}\Rightarrow dt=\frac{lnx}{x^{2}}dx \Rightarrow J=\int \frac{tdt}{(t+1)^{3}}=\int [\frac{1}{(t+1)^{3}}-\frac{1}{(t+1)^{2}}]dt$

=$-\frac{1}{2(t+1)^{2}}+\frac{1}{t+1}+C$

=$-\frac{x^{2}}{2(lnx+1+x^{2})}+\frac{x}{lnx+x+1}+C$

Ví dụ 2: Tìm nguyên vẹn hàm của:

a) ∫x.2x dx

b) ∫(x2-1) ex dx

Giải:

a) Đặt $\left\{\begin{matrix}u=x\\dv=2^{x}dx\Rightarrow \left\{\begin{matrix}
du=dx\\v=\frac{2^{x}}{ln2}. \end{matrix}\right. \end{matrix}\right.$

Ta có: $\int x2^{x}dx=\frac{x.2^{x}}{ln2}-\int \frac{2^{x}}{ln2}dx=\frac{x.2^{x}}{ln2}-\frac{2^{x}}{ln^{2}2}+C$

b) Đặt $\left\{\begin{matrix}u=x^{2}-1\\dv=e^{x}dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=2xdx\\v=e^{x}dx \end{matrix}\right.$

Suy rời khỏi tao có $\int f(x)dx=(x2-1)ex-\int 2x.ex$ dx

Đặt $\left\{\begin{matrix}u=2x\\dv=e^{x}dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=2dx\\v=e^{x}dx \end{matrix}\right.$

Ví dụ 3: Tìm toàn bộ những nguyên vẹn hàm của hàm số $f(x)=(3x^{2}+1).lnx$

A. $\int f(x)dx=x(x^{2}+1)lnx-\frac{x^{3}}{3}+C$

B. $\int f(x)dx=x^{3}lnx-\frac{x^{3}}{3}+C$

C. $\int f(x)dx=x(x^{2}+1lnx-\frac{x^{3}}{3}-x+C$

D. $\int f(x)dx=x^{3}lnx-\frac{x^{3}}{3}-x+C$

Giải:

Đặt $\left\{\begin{matrix}u=lnx\\dv=(3x^{2}+1)dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=\frac{1}{x}dx\\v=\int (3x^{2}+1)dx=x^{3}+x \end{matrix}\right.$

$\Rightarrow I=(x^{3}+x)lnx-\int (x^{3}+x)\frac{1}{x}dx=x(x^{2}+1)lnx-\int (x^{2}+1)dx=x(x^{2}+1lnx-\frac{x^{3}}{3}-x+C.$

=> Đáp án C.

3.3. Nguyên hàm của ln(ax+b)

Ví dụ 1:

Bất phương trình $In(2x^2+3)>In(x^2+ax+1)$ nghiệm chính với từng số thực khi?

Giải:

Giải Việc nguyên vẹn hàm của ln(ax+b)

Ví dụ 2: Tính nguyên vẹn hàm:

a) $\int 2xln(x-1)dx$

b) $\int \frac{ln(x+1)}{x^{2}}$

Giải:

a) Đặt $\left\{\begin{matrix}u=ln(x-1)\\dv=2xdx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=\frac{1}{x-1}dx\\v=x^{2}-1 \end{matrix}\right.$

Ta có $\int 2xln(x-1)dx$

=$(x^{2}-1)ln(x-1)-\int (x+1)dx$

=$(x^{2}-1)ln(x-1)-\int (x+1)dx$

=$(x^{2}-1)ln(x-1)-\frac{x^{2}}{2}-x+C$

Đặt $\left\{\begin{matrix}u=ln(1+x)\\dv=\frac{1}{x^{2}}dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix}
du=\frac{1}{(1+x)}dx\\v=-\frac{1}{x}-1=-\frac{1+x}{x} \end{matrix}\right.$

=> $F(x)=-\frac{1+x}{x}.ln(1+x)+\int \frac{1}{x}dx$

= $-\frac{1+x}{x}ln(1+x)+ln|x|+C$

3.4. Nguyên hàm của ln(x^2+1)dx

Ví dụ 1:

Tìm nguyên vẹn hàm I=$xIn(x^2+1)x2+1dx$

Giải:

Tính nguyên vẹn hàm của ln(x^2+1)dx

Ví dụ 2:

Cho $\int_{1}^{2}\frac{ln(1+x)}{x^{2}}dx=aln2+bln3$, với a và b là những số hữu tỉ. Tính P=ab

A. P=$\frac{3}{2}$

B. P=0

C. P=$\frac{-9}{2}$

D. P=-3

Giải:

Ta với I=$\int_{1}^{2}\frac{ln(1+x)}{x^{2}}dx=aln2+bln3$

Đặt $\left\{\begin{matrix}u=ln(1+x)\\dv=\frac{1}{x^{2}}dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=\frac{1}{1+x}dx\\v=-\frac{1}{x} \end{matrix}\right.$

Khi cơ I=$-\frac{1}{x}ln(1+x)\left|\begin{matrix}
2\\1 \end{matrix}\right.+\int_{1}^{2}\frac{1}{x(1+x)}dx=-\frac{1}{2}ln3+ln2+\int_{1}^{2}(\frac{1}{x}-\frac{1}{1+x})dx$

=$-\frac{1}{2}ln3+ln2+(ln\frac{x}{x+1})\left|\begin{matrix}2\\1 \end{matrix}\right.=-\frac{1}{2}ln3+ln2+2ln2-ln3=3ln2-\frac{3}{2}ln3$

Suy rời khỏi a=3, b=$-\frac{3}{2}$. Vậy P=$ab=\frac{-9}{2}$

Chọn đáp án C.

PAS VUIHOC – GIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng trong suốt lộ trình học tập kể từ thất lạc gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập theo đuổi sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học tới trường lại cho tới lúc nào hiểu bài bác thì thôi

⭐ Rèn tips tricks canh ty tăng cường thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền nhập quy trình học tập tập

Đăng ký học tập test không tính tiền ngay!!

3.5. Nguyên hàm của hàm số f(x)=ln/x

Ví dụ 1: Tính đạo hàm của hàm số f(x)=1x+In(x)x

Giải:

Ta có: 

y’= $-\frac{1}{x^{2}}+\frac{ln(x)'x-ln(x)'x}{x^{2}}$

=$-\frac{1}{x^{2}}+\frac{1+ln(x)}{x^{2}}=-\frac{ln(x)}{x^{2}}$

Ví dụ 2:

Giả sử tích phân I=$\int_{1}^{5}\frac{1}{1+\sqrt{3x+1}}dx$=a+bln3+cln5. 

Lúc đó:

A. $a+b+c=\frac{5}{3}$

B. $a+b+c=\frac{4}{3}$

C. $a+b+c=\frac{7}{3}$

D. $a+b+c=\frac{8}{3}$

Giải:

Đặt t = $\sqrt{3x+1}\Rightarrow dx=\frac{2}{3}tdt$

Đổi cận

Ta với I=$\int_{1}^{5}\frac{1}{1+\sqrt{3x+1}}dx=\int_{1}^{4}\frac{1}{1+t}.\frac{2}{3}tdt=\frac{2}{3}\int_{2}^{4}\frac{t}{t+1}dt=\frac{2}{3}\int_{2}^{4}(1-\frac{1}{t+1})dt=\frac{2}{3}(t-ln|1+t|)\left|\begin{matrix}4\\2 \end{matrix}\right.=\frac{4}{3}+\frac{2}{3}ln3-\frac{2}{3}ln5$

Do đó $a=\frac{4}{3};b=\frac{2}{3};c=-\frac{2}{3}$

Vậy $a+b+c=\frac{4}{3}$

=> Chọn đáp án B.

Ví dụ 3: Biết tích phân $\int_{0}^{ln6}\frac{e^{x}}{1+\sqrt{e^{x}+3}}dx=a+bln2+cln2$, với a, b, c là những số nguyên vẹn. Tính T=a+b+c

A. T=-1

B. T=0

C. T=2

D.T=1

Giải:

Đặt t=$\sqrt{e^{x}+3}\Rightarrow t^{2}=e^{x}+3\Rightarrow 2tdt=e^{x}dx$

Đổi cận $\left\{\begin{matrix}x=ln6\\x=0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix}
t=3\\t=2 \end{matrix}\right.$

Suy ra $\int_{0}^{ln6}\frac{e^{x}}{1+\sqrt{e^{x}+3}}dx=\int_{2}^{3}\frac{2tdt}{1+t}dt=(2t-2ln|t+1|)\left|\begin{matrix}3\\2 \end{matrix}\right.$

=$(6-2ln4)-(4-2ln3)=2-4ln2+2ln3 \Rightarrow \left\{\begin{matrix}a=2\\b=-4\\c=2 \end{matrix}\right.$

Vậy T=0

=> Chọn đáp án B

3.6. Tính nguyên vẹn hàm của ln(lnx)/x

Tính nguyên vẹn hàm $I=\int \frac{ln(lnx)}{x}dx$ được thành quả nào là sau đây?

Ví dụ 1: Tính nguyên vẹn hàm của hàm số  I=$\int \frac{ln(lnx)}{x}dx$

Giải:

Đặt lnx=t => dt = $\frac{dx}{x}$

Suy rời khỏi I=$\int \frac{ln(lnx)}{x}dx=\int lntdt$

Đặt $\left\{\begin{matrix}u=lnt\\dv=dt \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=\frac{dt}{t}\\v=t \end{matrix}\right.$

Theo công thức tính nguyên vẹn hàm từng phần tao có:

I=$tlnt-\int dt=tlnt-t+C=lnx.ln(lnx)-lnx+C$

Ví dụ 2:

Cho I=$\int_{1}^{e}\frac{lnx}{x(lnx+2)^{2}}dx=aln3+bln2+\frac{c}{3}$ với a, b, c $\in Z$. Khẳng tấp tểnh nào là tại đây chính.

A. $a^{2}+b^{2}+c^{2}=1$

B. $a^{2}+b^{2}+c^{2}=11$

C. $a^{2}+b^{2}+c^{2}=9$

D. $a^{2}+b^{2}+c^{2}=3$

Giải:

Ta với I=$\int_{1}^{e}\frac{lnx}{x(lnx+2)^{2}}dx, bịa đặt lnx+2=t => \frac{dx}{x}=dt$

I=$\int_{2}^{3}\frac{t-2}{t^{2}}dt=\int_{2}^{3}\frac{1}{t}dt-2\int_{2}^{3}\frac{1}{t^{2}}dt$

=$lnt\left|\begin{matrix}3\\2 \end{matrix}\right.+\frac{2}{t}\left|\begin{matrix}3\\2 \end{matrix}\right.$

=$ln3-ln2+\frac{2}{3}-\frac{2}{2}=ln3-ln2-\frac{1}{3}$

Suy rời khỏi a=1;b=-1;c=-1

Vậy $a^{2}+b^{2}+c^{3}=3$

Bên cạnh cơ, thầy Trường Giang đã với bài bác giảng cực kỳ hoặc về nguyên vẹn hàm tích phân với mọi tip giải bài bác tập dượt cực kỳ hữu ích nhằm giải đề thi đua trung học phổ thông Quốc gia. Các em nằm trong coi nhập đoạn Clip sau đây nhé!

Nắm đầy đủ bí quyết đạt 9+ thi đua Toán chất lượng nghiệp trung học phổ thông Quốc Gia ngay

Sau nội dung bài viết này, kỳ vọng những em đang được bắt chắc chắn được toàn cỗ lý thuyết, công thức về nguyên vẹn hàm Inx, kể từ cơ áp dụng hiệu suất cao nhập bài bác tập dượt. Để đạt thêm nhiều kỹ năng hoặc em rất có thể truy vấn tức thì Vuihoc.vn nhằm ĐK thông tin tài khoản hoặc contact trung tâm tương hỗ để sở hữu được kỹ năng cực tốt sẵn sàng mang đến kỳ thi đua ĐH tới đây nhé!

     Tham khảo thêm:

Bộ Sách Thần Tốc Luyện Đề Toán - Lý - Hóa THPT Có Giải Chi Tiết

>> Xem thêm:

  • Phương pháp tính tích phân từng phần và ví dụ minh họa
  • Đầy đầy đủ và cụ thể bài bác tập dượt phương trình logarit với lời nói giải
  • Tuyển tập dượt lý thuyết phương trình logarit cơ bản